Journal of Organometallic Chemistry, 403 (1991) C1-C3 Elsevier Sequoia S.A., Lausanne JOM 21515PC

Preliminary communication

Synthesis and crystal structure of the complex double salt $[Re(NCC_6H_4Me-4)_2-(Ph_2PCH_2CH_2PPh_2)_2][ReF_2(Ph_2PCH_2CH_2PPh_2)_2][BF_4]_2$

M. Fátima C.G. Silva, Armando J.L. Pombeiro *

Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisbon Codex (Portugal)

Adrian Hills, David L. Hughes and Raymond L. Richards

AFRC-IPSR Nitrogen Fixation Laboratory, University of Sussex, Falmer, Brighton BN1 9RQ (UK)

(Received October 30th, 1990)

Abstract

Reaction of NCC₆H₄Me-4 with *trans*-[ReCl(N₂)(dppe)₂] (dppe = Ph₂PCH₂CH₂PPh₂) in the presence of TlBF₄ has given the formation of *trans*-[Re(NCC₆H₄Me-4)₂(dppe)₂][BF₄] · *trans*-[ReF₂(dppe)₂][BF₄], the crystal structure of which has been determined.

The coordination chemistry of organonitriles is of wide interest [1] because of the widespread use of nitrile complexes as starting materials and of the C=N stretching band in the IR as an indicator of the electron density at a ligated metal centre.

In pursuit of our interest in the reactions of small molecules at dinitrogen-binding centres [2] we recently prepared the series *trans*-[ReCl(NCR)(dppe)₂] (R = alkylor aryl; dppe = Ph₂PCH₂CH₂PPh₂) and showed that nitriles bound at this centre are susceptible to protic attack to give ligating methyleneamido groups [3].

In general, RCN ligands are relatively poor π -acids and normally ligate electronrich centres in combination with a stronger π -acid, e.g. in *trans*-[Re(N₂)(NCR)-(dppe)₂]⁺ [4], *trans*-[Mo(N₂)(NCR)(dppe)₂] [5] and [M(CO)_{6-n}(NCMe)_n] (M = Cr, Mo or W; n = 1, 2 or 3) [6]. However, we have now succeeded in preparing a dinitrile complex of Re(I), *trans*-[Re(NCC₆H₄Me-4)₂(dppe)₂]⁺, and during its preparation have also obtained an unusual difluoride cation of Re^{III}, [ReF₂(dppe)₂]⁺, as described below.

After treatment of *trans*-[ReCl(N₂)(dppe)₂] in refluxing tetrahydrofuran (THF) with NCC₆H₄Me-4 (3 molar equivalents) in the presence of TlBF₄ (2 molar equivalents) we obtained an orange crystalline compound. It has a C=N IR band at 2140 cm⁻¹, lower by circa 80 cm⁻¹ than that for the free nitrile, pointing to the electron-rich nature of the {Re(dppe)₂}⁺ site, i.e. to considerable electron release from metal to ligand [1,2].

Fig. 1. Molecular structure of the *trans*-{Re(NCC₆H₄Me-4)₂(dppe)₂]⁺ moiety. Selected dimensions (with e.s.d.'s in parentheses): Re(1)-N(3) 2.063(7), N(3)-C(30) 1.102(13), C(30)-C(31) 1.417(14), Re(1)-P(1) 2.392(3), Re(1)-P(2) 2.409(2) Å. Re(1)-N(3)-C(30) 178.6 (6), N(3)-C(30)-C(31) 177.2(12), P(1)-Re(1)-N(3) 85.8(2), P(2)-Re(1)-N(3) 85.6(2)°.

The X-ray structure of this molecule reveals, moreover, that not only does it contain the desired dinitrile cation $[Re(NCC_6H_4Me-4)_2(dppe)_2]^+$ but also the unusual difluoride cation $[ReF_2(dppe)_2]^+$, i.e. the species is *trans*- $[Re(NCC_6H_4Me-4)_2(dppe)_2][BF_4] \cdot trans$ - $[ReF_2(dppe)_2][BF_4]$. The molecular structure of the dinitrile cationic species is shown in Fig. 1, together with selected bond lengths and angles *.

Both complex cations show a distorted octahedral coordination and the Re-N distance for the virtually linear nitrile ligands in the dinitrile complex [2.063(7) Å] is a little longer than the 1.978(5) Å observed [7] for the neutral compound *trans*-

Crystal data for trans-[Re(NCC₆H₄Me-4)₂(dppe)₂][BF₄] · trans-[ReF₂(dppe)₂][BF₄].

 $⁽C_{68}H_{62}N_2P_4Re)^+(C_{52}H_{48}F_2P_4Re)^+ 2(BF_4)^-, M^22412.0.$ Triclinic, space group $P\overline{1}$ (no. 2), a 13.606(1), b 21.148(2), c 10.714(1) Å, α 98.111(9), β 117.151(7), γ 94.152(8)°, V = 2682.6 Å³. $Z = 1, D_c = 1.493$ g cm⁻³, $F(000) = 1214, \mu(Mo-K_{\alpha}) = 24.7$ cm⁻¹, $\lambda(Mo-K_{\overline{\alpha}}) = 0.71069$ Å.

An orange-yellow irregular needle (ca. $0.10 \times 0.14 \times 0.30$ mm) was photographed, then transferred to our Enraf-Nonius CAD4 diffractometer (with monochromated radiation) for accurate cell dimensions and intensity data ($\theta_{max} = 25^{\circ}$; 9415 independent reflections). Corrections were applied for Lorentz and polarisation effects, absorption and to eliminate negative intensities.

Structure determination was by heavy-atom methods in the SHELX system [10]. For the centrosymmetrical cation [Re(NCC₆H₄Me-4)₂(dppe)₂]⁺, all the C, N, P and Re atoms were allowed anisotropic thermal parameters, and H atoms (except those in the methyl group) were included in idealised positions. The second cation, also lying about a centre of symmetry, shows considerable thermal motion (or disorder) and less satisfactory refinement. From large-block-matrix least-squares refinement, final R = 0.073, $R_g = 0.094$ [10] for 8311 reflections (those with $I > \sigma_I$) weighted $w = (\sigma_F^2 + 0.00170 F^2)^{-1}$.

Tables of atomic parameters and molecular dimensions have been deposited at the Cambridge Crystallographic Data Centre.

[ReCl(NCMe)(dppe)₂], in which there is a *trans* influence of the π -donor chloride ligand.

The cation trans-[ReF₂(dppe)₂]⁺ shows considerable thermal motion, or possibly disorder, in the phenyl rings. The Re-P distances in this cation (average of 2.453(4) Å) and in the related cation trans-[ReCl₂(Me₂PCH₂CH₂PMe₂)₂]⁺ (average of 2.438(2) Å) [8] are somewhat longer than those in the dinitrile-rhenium(I) complex cation (average of 2.401(3) Å). The Re-F bond length, 2.045(10) Å, is not too different from that reported [9] for the complex trans-[ReF(CCH₂Bu^t)(dppe)₂][BF₄], 2.134(4) Å.

Although we have previously observed the ability of $[BF_4]^-$ to mono-fluorinate the $\{Re(dppe)_2\}^+$ centre [9], the double fluorination observed here, which occurs despite the presence of a nitrile substrate, is rather surprising, and we are studying the mechanism of this reaction and its generality.

Acknowledgements. We thank INIC and JNICT (Portugal) for partial support of this work.

References

- 1 For reviews see, e.g. (a) Yu.N. Kukushkin, Koordinat. Khim., 7 (1981) 323; (b) B.N. Storhoff and H.C. Lewis, Jr., Coord. Chem. Rev., 23 (1977) 1.
- 2 A.J.L. Pombeiro, in J. Chatt, L.M.C. Pina and R.L. Richards (Eds.), New Trends in the Chemistry of Nitrogen Fixation, Chap. 10, Academic Press, New York, 1980; A.J.L. Pombeiro, in U. Schubert (Ed.), Advances in Metal Carbene Chemistry, NATO ASI Series, Kluwer Acad. Publ., Dordrecht, The Netherlands, 1989, p. 79; A.J.L. Pombeiro and R.L. Richards, Coord. Chem. Rev., 104 (1990) 13; D.L. Hughes, A.J.L. Pombeiro and R.L. Richards, in H. Bothe, F.J. Bruin and W.E. Newton (Eds.), Nitrogen Fixation: Hundred Years After, Gustav Fischer, New York, 1988, p. 66.
- 3 A.J.L. Pombeiro, D.L. Hughes and R.L. Richards, J. Chem. Soc., Chem. Commun., (1988) 1052.
- 4 G.J. Leigh, R.H. Morris, C.J. Pickett and D.R. Stanley, J. Chem. Soc., Dalton Trans., (1981) 800.
- 5 T. Tatsumi, M. Hidai and Y. Uchida, Inorg. Chem., 14 (1975) 2530.
- 6 J.M. Kelly, D.V. Bent, H. Herrmann, D. Schulte-Frohlinde and E.K. von Gustorf, J. Organomet. Chem., 69 (1974) 259; J.M. Graham and M. Kilner, ibid., 77 (1974) 247.
- 7 A.J.L. Pombeiro, M.F.C.G. Silva, D.L. Hughes and R.L. Richards, Polyhedron, 8 (1989) 1872.
- 8 J.L. Vanderheyden, M.J. Heeg and E. Deutsch, Inorg. Chem., 24 (1985) 1666.
- 9 A.J.L. Pombeiro, A. Hills, D.L. Hughes and R.L. Richards, J. Organomet. Chem., 352 (1988) C5.
- 10 G.M. Sheldrick, sheLXN, Modified version of sheLX-76 program for crystal structure determination, University of Cambridge, 1976.